Publish Events
Defensively

Technology Toolbox

o VB.NET

o c#

3 SQL Server 2000
o ASP.NET

2 XML

J VB6

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these resources.

Download

VS0305QA Download the code for
this article. It includes the
EventsHelper class and the Web
services state demo.

Discuss
VS0305QA_D Discuss this article in
the C# forum.

Read More

VS0305QA_T Read this article
online.

VS0204JL_T “Tame .NET Events” by
Juval Lowy

NMO101JL_T “Web Services Hurdle
the Firewall” by Juval Lowy
VS02ENAN_T ASP.NET, “Write
More Powerful Web Services,” by
Francesco Balena

48

¢ Publish Events
Defensively
When I use a delegate to publish events, the
subscribers raise exceptions occasionally that
abort the publishing sequence. I also getanother
exception if there are no subscribers. Is there a
way to continue publishing events defensively,
even in the face of exceptions?

A:

You can use quite a few techniques to publish
events defensively. When you publish events in
C#, trying to fire an event on a delegate that has
no subscribers in its internal list is a common
source of exceptions. If no client subscribes to the
event, the delegate’s target list is empty, and the
delegate’s value is set to null automatically. As a
result, an exception is thrown when the publisher
tries to access a nulled delegate. In C#, the pub-
lisher should always check an
event delegate to see if it’s null
before attempting to publish:

public class MySource
{
public event
EventHandler
MyEvent;
public void FireEvent()
{
if(MyEvent != null)
MyEvent(this,
EventArgs.Empty);

by Juval Lowy

RaiseEvent statement can accept an empty del-
egate without throwing an exception:

Public Class MySource
Public Event MyEvent As EventHandier
Public Sub FireEvent()
RaiseEvent MyEvent(Me,
EventArgs.Empty)
End Sub
End Class

Exceptions that the subscribers throw are the
second source of exceptions. Some subscribers
might encounter an exception in their handling
ofthe event, not handleit, and cause the publisher
to crash. For this reason, you should always
publish inside a try/catch block (see Listing 1).

The code in Listing 1 aborts publishing the
event if one of the subscribers throws an excep-

J Calculator Client

} Figure 1 Create a Calculator Client. The calculator client simply
exercises the various WWeb methods in the calculator Web service.

In VB.NET, you needn’t check
the delegate’s value, because the

VISUAL STUDIO MAGAZINE +

You use the same textbox both for the arithmetic operations and
for the memory content.

Istudi

com

MAY 2003 + www.vi:




/ C# e Publish Defensively

public class MySource
{
public event EventHandler MyEvent;
public void FireEvent()
{
try
{
if(MyEvent != null)
MyEvent(this,EventArgs.Empty);

}
catch
{
//handle exceptions
}

}

Listing 1 Always publish events within a try/catch block to handle
exceptions that the subscribers throw. In C#, you also need to check
the delegate for null (no subscribers).

tion. However, you want to continue publishing sometimes, even if
one of the subscribers throws an exception. To do this, you need to
iterate manually over the internal delegate list that the delegate
maintains and catch any exceptions that the individual delegates in
the list throw. You access the internal list by using a special method
called GetInvocationList(), which every delegate supports:

public virtual Delegate[]
GetInvocationList();

GetlnvocationList() returns a collection of delegates you can
iterate over (see Listing 2). You use a foreach statement to traverse
the delegate collection, trying to deliver the event manually to each
subscriber. If a particular subscriber throws an exception, then you
catch it and continue to the next subscriber. The problem with the
publishing code in Listing 2 is that it’s not generic; it’s specific to
that particular delegate definition, and you must duplicate it in
every case where you want faultisolation between the publisher and
the subscribers. However, you can write a generic helper class that
publishes to any delegate, passes any argument collection, and
catches potential exceptions. The EventsHelper class provides the
static Fire() method (see Listing 3 and download the source code
from the VSM Web site; see the Go Online box for details):

public class EventsHelper
{
public static void Fire(Delegate
del,params object[] args);

You use Fire to fire any type of event defensively. Implementing
EventsHelper involves two key elements. The first is its ability to
invoke any delegate. You do this by using the DynamicInvoke()
method that every delegate provides:

public object DynamicInvoke(object[]
args);

Dynamiclnvoke() invokes the delegate, passing it a collection of
arguments. The second key in implementing EventsHelper is

1 i

WWW. Vi udic

MAY 2003 -

VISUAL STUDIO MAGAZINE  + com

passing it an open-ended number of objects as arguments for the
subscribers. You do this by using the C# param parameter modifier
(ParamArray in VB.NET), which allows simple in-lining of objects
as parameters.

As a result, using EventsHelper is elegant and straightforward:
Simply pass it the delegate to invoke, and the parameters. For
example, suppose you have the delegate SomeDelegate:

public delegate void SomeDelegate(int
num,string str);

This is the publishing code for SomeDelegate:

public class MySource
{
public event SomeDelegate SomeEvent;

/

public class MySource

{
public event EventHandler MyEvent;
public void FireEvent()
{

C# » Catch Exceptions and Keep Publishing

if(MyEvent == null)
{
return;
I
Delegate[] delegates =
MyEvent.GetInvocationList();
foreach(Delegate del in delegates)
{
EventHandler sink = (EventHandler)del;
ey,
{
sink(this,EventArgs.Empty);
}
catch{}

}
}

Listing 2 You can publish continuously in the face of exceptions that
the subscribers throw. By iterating over the delegate’s internal list of
invocation targets, you can invoke them individually, catch any ex-
ception, and publish to the next subscriber.

/ C# e Publish to Any Delegate

public class EventsHelper
{
public static void Fire(Delegate del,params
object[] args)

4

{

if(del ==
{

return;
}
Delegate[] delegates =

del.GetInvocationList();
foreach(Delegate sink in delegates)
{

try

{

sink.DynamicInvoke(args);

}

catch{}
}

null)

}

Listing 3 You can use EventsHelper to publish any collection of argu-
ments to any delegate, without propagating exceptions to the publisher.

49



QA

A

public class CalculatorEx :
{
[WebMethod(EnableSession=true)]
public int MemoryRecall()
{
int memory = 0;
object state =
Memory"1;
if(state = null)
{

C# o Build a State-Aware Web Service

WebService

Session["Calculator

memory = (int)state;
leturn memory ;
EWebMethod(Enab1eSession=true)]
public void MemoryStore(int num)
( Session["Calculator Memory"] = num;

}
[WebMethod(EnableSession=true)]
public void MemoryReset()
{
Session["Calculator Memory"] = 0;

)

[WebMethod]

public int Add(int numl,int num2)

{

return numl + num2;

}

/* Rest of the arithmetic operation method */
}

Listing 4 This Web service stores its state in the base WebService
class’ Session property. The Session property provides an indexer to
store and load the state. You also must enable session management
in each Web method that requires access to the session object.

public void FireEvent(int num,
string str)

EventsHelper.Fire(
SomeEvent,num,str);

¢« Manage Web Services State
How do I maintain state in my Web service if NET instantiates a
new Web service object for every Web method call?

A

o .

Web services are single-call objects: For every Web method call,
.NET instantiates a new object and lets it handle the call. Asa result,
if you want to have state in your Web service object, you must be
state-aware—that is, manage your Web service state proactively.
You retrieve the state from some repository at the beginning of a
Web method; you work on the state during the method; and you
must save the state just before returning from the Web method. You
can store the state anywhere you like—in a file, on another machine,
in a database, and so on.

ASP.NET provides built-in support for Web services state
management by storing the state in a Session state variable. This is
the same support that’s available for Web forms. You specify the
session storage in the Web service configuration file (Web.config).
The available options are in-memory on the same machine where
the Web service runs, on a designated machine, or in SQL Server.

50

In-memory is the easiest option during development. A dedicated
state machine caters to scalability when you use a server farm. SQL
Server storage is available for cases when the Web service initiates a
transaction, and it’s useful in both single-machine and Web farm
scenarios. The great thing about ASP.NET’s state management is
that you can develop it one way and deploy it in another, merely by
changing the entries in the configuration file.

ASP.NET distinguishes automatically between different ses-
sions by sending the client a cookie. Each distinct session has a
different copy of the session variables. A Web form accesses the
session storage through the Page class’ Session property (of type
HttpSessionState). To access the session object from a Web service,
you can derive from the class WebService and access its Session
property. Another option is to access the Session property of the
current HTTP context:

HttpSessionState Session =
HttpContext.Current.Session;

You must also enable session management support for your Web
service explicitly. The HttpSessionState object provides an indexer
that accepts an object as a key and an object as a value. You use the
indexer for both state storage and retrieval.

For example, suppose you want to develop a calculator Web
service that provides the four basic arithmetic operations for inte-
gers, as well as the capability (similar to a pocket calculator’s
memory feature) to store a number in memory on the server, to
recall the number from memory, and to reset the memory (see
Listing 4 and download the source code). The CalculatorEx Web
service in Listing 4 derives from WebService so that you can access
its Session property. You must set the WebMethod attribute’s
EnableSession property to true in every method that requires access
to the session object, because session-state support is disabled by
default. The ability to enable session state support on an individual-
method basis caters to performance, because you don’t need to pay
for its overhead in methods that don’t require it.

Use the indexer to store an object in the session state:

[WebMethod(EnabTeSession=true)]
public void MemoryStore(int num)
{
Session["Calculator Memory"] =
num;

You must decide on the key object; a string is fine for this example.
Simply provide the key back to the indexer to load the state:

[WebMethod(EnableSession=true)]
public int MemoryRecall()
{
int memory = 0;
object state =
Session["Calculator Memory"J;
if(state
{

I= null)

memory = (int)state;

MAY 2003 + www.visualstudiomagazine.com

VISUAL STUDIO MAGAZINE




return memory;

The session state returns null if it doesn’t contain the specified key.

You can use the VS.NET-generated test page to build and run the
Web service. If your browser supports session cookies (it likely does,
unless you disabled it), the memory-feature methods will store, recall,
and reset the memory. However, Web services are likely to be accessed
by another machine, without any browser involved. You need to take
an additional step on the client side to enable

Juval Lowy is a software architect and the principal of
IDesign, a consulting and training company focused on
.NET design and .NET migration. Juval is Microsoft's
regional director for the Silicon Valley, working with
Microsoft on helping the industry adopt .NET. This
article derives from his latest book, Programming .NET
Components (O'Reilly & Associates). Juval speaks frequently at
software-development conferences. Contact him at www.idesign.net.

ommey

session state in this case. Create a new
WinForms client, then add buttons and
textboxes to exercise the calculator Web meth-
ods (see Figure 1). Next, add a reference to the
Web service. If you run the client, you'll see
that the arithmetic methods (such as Add)
work fine, but the memory-management
methods don’t work. The reason is that by
default, the Web service wrapper VS.NET
creates doesn’t support session cookies sent

SonY

CategoryName

[ Category : Beverages

[l Category : Condiments
Condiments
Condiments

Condirnents

CategoryName ProductName

NorthWind Products

QuantityPerUnit Price In Stock!  On Order ReorderLevel Discontin... 4|
Aniseed Syrup 12 - 550 ml bottles $10.00 13 70 25
Chef Anton's Cajun Seasoning 48 - 6 0z jars $22.00 53 0 0

24 - 250 ml bottles

from the service. You must add that support e o e 2 2 2o
manually The Web service wrapper class Condiments Gula Melacca 20 - 2 kq bags $19.45 27 0 15 ]

Condiments Louisiana Fiery Hot Pepper Sauce 32 - 8 oz bottles $21.05 76 0 0

1 1 i 1 ~ Condiments Louisiana Hot Spiced Okra 24 - 8 oz jars $17.00 4 100 20

€rives 1ndirectly rrom the rittp Wel lent i 2 S S : : A

. » ondimen lorthwoods Cranberry Sauce 12 - 12 oz jars A

Protocol class, which has the CookieCon- Condiments Original Frankfurter grane Sofle 12 boxes $13.00 2 0 15
» Condiments Sirop d'érable 24 - 500 ml bottles $28.50 113 0 25 ]
tainer property Of the type SyStCm.NCt,- Condiments Vegie-spread 15 - 625 g jars $43.90 24 0 5 ]

. . . Units on order: Aniseed Syrup, Louisiana Hot Spiced Okra fins
CookieContainer. By default, CookieCon- S Catoteey i Cotastins s 2

3 LR SRCREROR | Confections Chocolade 10 pkgs. $12.75 15 70 25 ]
tainer isn’t initialized (set to null), so the Rl e e i = 5 S
1 g o) Confections Maxilaku 24 - S0 g pkgs. $20.00 10 60 15 ]
COOle sent ﬁ'om the Web service 1sn t Stored Confections NuNuCa NuB-Nougat-Creme 20 - 450 g glasses $14.00 76 0 30 ]
1 1 1 Confections Pavlova 32 - 500 g boxes $17.45 29 0 10 (]
on thC Chent SIde' YOll must create a COOle Confections Schogai Schokolade 100 - 100 g pieces $43.90 49 0 30 O
10 boxes x 8 pieces $12.50 6 10 15 i

container (sometimes called a cookie jar) and Confections

Scottish Longbreads

e M Lad. AN Akt hovac #2100

s <

associate it with the CookieContainer prop-
erty. Open the Reference.cs file on the client

side and create a new container in the wrap- e B ey S
On Order; 0
per class constructor:
¢ ADO, DAO Data Binding

public class CalculatorEx :
SoapHttpClientProtocol

public CalculatorEx()
(

CookieContainer new

System.Net.CookieContainer();

"http://localhost/
CalculatorEx/
CalculatorEx.asmx";

url

} a
/* Rest of CalculatorEx */

If you test the client, you’ll see the memory
feature works now. vsm

Additional Resources

Programming .NET Components by
Juval Lowy [0'Reilly & Associates,
2003, ISBN: 0596003471]

Unbound mode: Event driven or using interfaces

Variety of cell edits types: single and multi-line edit box, action button,
check box and combo box

Supports Alpha blending and gradient fills

Implements a stage driven, custom draw mode you can intercept and
replace one or more stages in control’s paint cycle

Data highlighting using styles

Odd-Even rows highlighting

Preview panel allows you to show contents of one column inside the
preview pane

Single or multiple column sorting

Outlook style grouping and Group Calculations: Users can select one or
‘ more columns and group rows based on values in selected columns

Frozen Rows and Columns

Supports Print and Print Preview using Data Dynamics’ Active Reports
Viewer Control (included)

Natively supports export to Excel worksheets. Excel not required.

614-895-3142
Fax 899-2943

: Sweet and savory sauces, relishes, spreads, and seasqyings

Chef Anton's Gumbo Mix
36 boxres

Nams:
Per Unit:

=
DATA DYNAMICS
www.datadynamics.com

Download Free
Evaluation Copy
from our website!

MAY 2003

VISUAL STUDIO MAGAZINE

www.visualstudiomagazine.com

51



